Very-Efficient Simulatable Flipping of Many Coins into a Well - (and a New Universally-Composable Commitment Scheme)

نویسنده

  • Luís T. A. N. Brandão
چکیده

Secure two-party parallel coin-flipping is a cryptographic functionality that allows two mutually distrustful parties to agree on a common random bitstring of a certain target length. In coin-flipping into-a-well, one party learns the bit-string and then decides whether to abort or to allow the other party to learn it. It is well known that this functionality can be securely achieved in the ideal/real simulation paradigm, using commitment schemes that are simultaneously extractable (X) and equivocable (Q). This paper presents two new constant-round simulatable coin-flipping protocols, based explicitly on one or a few X-commitments of short seeds and a Q-commitment of a short hash, independently of the large target length. A pseudo-random generator and a collision-resistant hash function are used to combine the separate X and Q properties (associated with short bit-strings) into a unified X&Q property amplified to the target length, thus amortizing the cost of the base commitments. In this way, the new protocols are significantly more efficient than an obvious batching or extension of coin-flippings designed (in the same security setting) for short bit-strings and based on inefficient X&Q commitments. The first protocol, simulatable with rewinding, deviates from the traditional coin-flipping template in order to improve simulatability in case of unknown adversarial probabilities of abort, without having to use a X&Q commitment scheme. The second protocol, one-pass simulatable, derives from a new construction of a universally composable X&Q commitment scheme for large bit-strings, achieving communication-rate asymptotically close to 1. Besides the base X and Q commitments, the new commitment scheme only requires corresponding collision-resistant hashing, pseudo-random generation and application of a threshold erasure code. Alternative constructions found in recent work with comparable communication complexity require explicit use of oblivious transfer and use different encodings of the committed value.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor

Canetti and Fischlin have recently proposed the security notion universal composability for commitment schemes and provided two examples. This new notion is very strong. It guarantees that security is maintained even when an unbounded number of copies of the scheme are running concurrently, also it guarantees non-malleability and security against adaptive adversaries. Both proposed schemes use ...

متن کامل

Fully Simulatable Quantum-Secure Coin-Flipping and Applications

We propose a coin-flip protocol which yields a string of strong, random coins and is fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented with quantum-computational security without any set-up assumptions, since our construction only assumes mixed commitment schemes which we show how to construct in the given setting. We then show that the interactive ge...

متن کامل

On Black-Box Complexity of Universally Composable Security in the CRS Model

In this work, we study the intrinsic complexity of black-box Universally Composable (UC) secure computation based on general assumptions. We present a thorough study in various corruption modelings while focusing on achieving security in the common reference string (CRS) model. Our results involve the following: • Static UC secure computation. Designing the first static UC secure oblivious tran...

متن کامل

Universally Composable Oblivious Transfer in the Multi-party Setting

We construct efficient universally composable oblivious transfer protocols in the multi-party setting for honest majorities. Unlike previous proposals our protocols are designed in the plain model (i.e., without a common reference string), are secure against malicious adversaries from scratch (i.e., without requiring an expensive compiler), and are based on weaker cryptographic assumptions than...

متن کامل

A Simpler Proof of the Existence of Quantum Weak Coin Flipping with Arbitrarily Small Bias

God does not play dice. He flips coins instead.” And though for some reason He has denied us quantum bit commitment. And though for some reason he has even denied us strong coin flipping. He has, in His infinite mercy, granted us quantum weak coin flipping so that we too may flip coins. Instructions for the flipping of coins are contained herein. But be warned! Only those who have mastered Kita...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015